

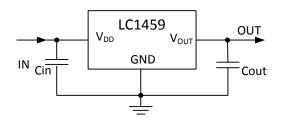
LC1459

GENERAL DESCRIPTION

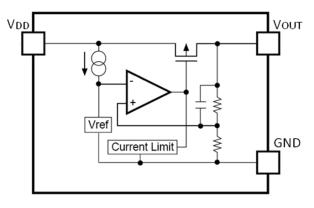
LC1459 series are a group of positive voltage output, high precise, and low power consumption voltage regulator. Voltages are selectable in 100mV steps within a range of 1.2V to 5.0V. It also can be customized on command.

LC1459 series have excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within $\pm 2\%$.

LC1459 series are available in SOT-223 package, which are lead (Pb)- free.


FEATURES

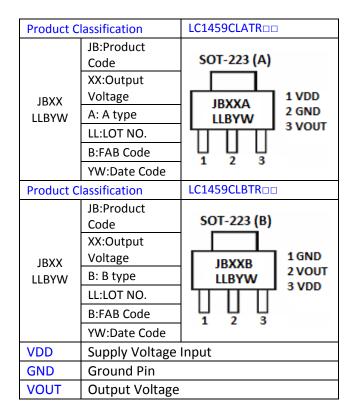
- Low Quiescent Current: 100uA at 5V
- High PSRR: 70dB range to 1KHz
- Low Output Noise: 44uVRMS
- Low Dropout: 300mV at 1A load
- Maximum output current: 1.5A
- Highly Accurate: ±2%
- Low ESR Ceramic Capacitor Compatible


APPLICATIONS

- Reference Voltage Source
- Battery Powered Equipment
- PC Peripherals
- Wireless Devices
- Instrumentation

TYPICAL APPLICATION

BLOCK DIAGRAM



ORDERING INFORMATION

LC1459 ① ② ③ 件 ⑤

Code	Description			
1	Temperature&Rohs:			
	C:-40~85°C ,Pb Free Rohs Std.			
2	Package type:			
	LA: SOT-223 (A)			
	LB: SOT-223 (B)			
<u>3</u>	Packing type:			
	TR:Tape&Reel (Standard)			
4	Output voltage:			
	e.g. 12=1.2V 18=1.8V			
	25=2.5V 33=3.3V			
	50=5.0V			
ß	Voltage accuracy:			
	1=±1%(Customized)			
	Blank(default)=±2%			

PIN CONFIGURATION

Y: The Year of manufacturing, "1" stands for year 2011, "2" stands for year 2012, and "8" stands for year 2018. W: The week of manufacturing. "A" stands for week 1,"Z" stands for week 26," \overline{A} " stands for week 27," \overline{Z} " stands for week 52.

RECOMMENDED WORK CONDITIONS

Parameter	Value		
Input Voltage Range	Max. 6V		
Ambient Temperature	-40°C~85°C		
Operating Junction Temperature (T _J)	125°C		

ABSOLUTE MAXIMUM RATING

Paramete	Value			
i aramete	value			
Max Input Voltage	8V			
Max Operating Junctio	145°C			
Temperature (T _J)				
Ambient Temperature	-40°C~85°C			
Package Thermal	SOT-223	20°C / W		
Resistance	301-223	20 C / W		
Storage Temperature (-40°C~150°C			
Lead Temperature & T	260°C, 10 Sec			

ELECTRICAL CHARACTERISTICS

Test Conditions: C_{IN} =4.7 μ F, C_{OUT} =4.7 μ F, T_A =25°C, unless otherwise specified.

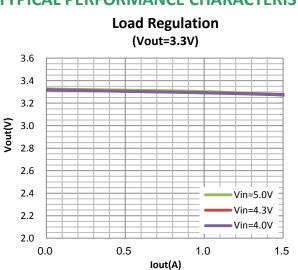
Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{DD}	Input Voltage			1.5*		6	V
V _{OUT} Output Voltage	Output	V _{OUT} >1.5	V _{DD} =Set V _{OUT} +1V	V _{OUT} X0.98	V	V _{OUT} X1.02	v
	V _{OUT} <=1.5	1mA≤l _{o∪т} ≤10mA	V _{OUT} -0.03	V _{OUT}	V _{OUT} +0.03	v	
I _{OUT} (Max.) **	Maximum Output Current		V _{DD} -V _{OUT} =1V	1.5			А
V _{DROP}	Dropout Voltage		V _{OUT} =3.3V, I _{OUT} =1A		300	500	mV
$\frac{\Delta Vout}{\Delta Vin \cdot Vout}$	Line Regulation		I _{ou⊤} =10mA, 4V≤V _{DD} ≤6V		0.05	0.2	%/V
$\Delta Vout$	Load Regulation		V _{DD} =Set V _{OUT} +1V 1mA≤I _{OUT} ≤2.5A		30	60	mV
ls	Supply Current		V_{DD} =Set V_{OUT} +1V, V_{OUT} Floating		100	150	uA
$\frac{\Delta Vout}{\Delta T \cdot Vout}$	Output Voltage Temperature Coefficient		I _{OUT} =10mA		±100		ppm/°C
PSRR	Ripple Rejection		f=100Hz, Ripple=0.5Vp-p, V _{DD} =Set V _{OUT} +1V		70		dB
en	Output Noise		BW=10Hz~100KHz		44		uVrms

Note: *Iout=500mA@Vout=1.2V

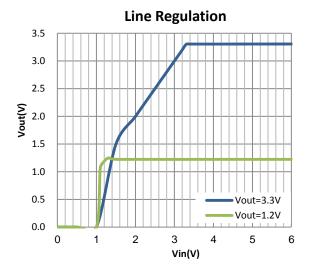
**The maximum power rating of each package is a constant, so along with the change of I_{LOAD} , the V_{DD} - V_{OUT} should be controlled to a certain range to ensure the normal operation.

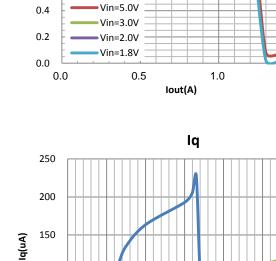
THERMAL CONSIDERATIONS

We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by LC1459 is very large. LC1459 series uses SOT-223 package type and its thermal resistance is about 20° C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30° C/W. So the total thermal resistance is about 20° C/W + 30° C/W. In this case, the power dissipation should be limited less than 1.2W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120° C/W, then the power dissipation of LC1459 could allow on itself is less than 1W. And furthermore, LC1459 will work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.


CURRENT LIMIT MODE

Current Limit module can keep chip and power system away from danger when the load current is higher than the current limit threshold. When Vout decrease the Short Circuit Current will fold back to a small value.


SHORT CIRCUIT PROTECTION


When Vout short to GND, the short circuit protection will be triggered and clamp the output current to approximately 400mA. This feature protects the regulator from over current and damage due to overheating.

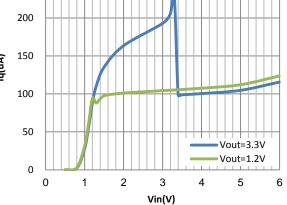
1.5

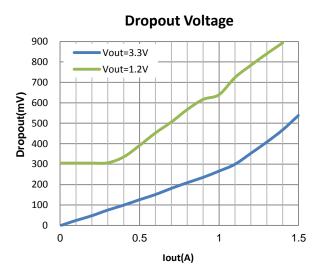
TYPICAL PERFORMANCE CHARACTERISTICS

Load Regulation

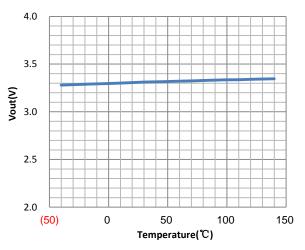
(Vout=1.2V)

1.4

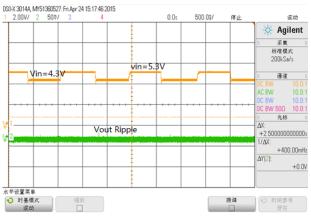

1.2

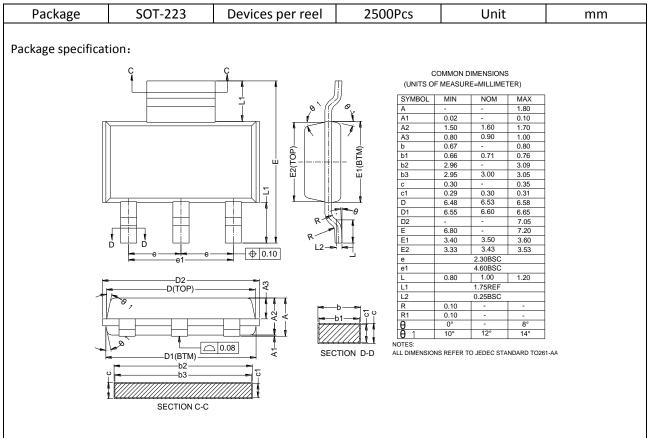

1.0

0.8


0.6


Vout(V)


Vout vs. Temperature



Line Transient Response(Vin=5V,Vout=3.3V)

Cin=1uF,Cout=1uf,Iout=10mA,Vin=4.3V-5.3V

PACKAGE LINE

