ETR0317_004

High Current, High Speed LDO Regulators

GENERAL DESCRIPTION

The XC6210 series are precise, low noise, high current, positive voltage low dropout regulators. They are fabricated using Torex's CMOS process.

The series features a voltage reference, an error amplifier, a current limiter, and a phase compensation circuit plus a driver transistor. With a low ON resistance driver transistor built into, batteries can be used until input-output voltage differential is minimal and can accordingly be used for a longer time.

The series is also compatible with low ESR ceramic capacitors which give added output stability.

The output voltage of the LDO is selectable in 0.05V increments within the range of 0.8V to 5.0V.

The current limiter's foldback circuit also operates as the output current limiter and the output pin protection.

The IC's internal regulator circuit can be placed in stand-by mode via the CE function. In the stand-by mode, power consumption is greatly reduced.

APPLICATIONS

CD-ROMs, CD-R / RW drive

DVD drive

HDD drive

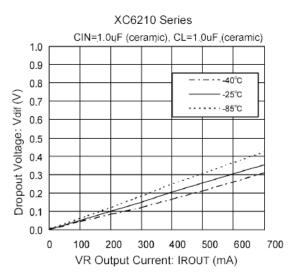
Cameras, Video recorders

Portable AV equipment

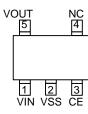
Battery powered equipment

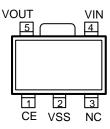
FEATURES

Maximum Output Current	: More than 700mA (800mA limit, TYP.) (1.6V≤Vou⊤(т)≤5.0V)
Dropout Voltage	: 50mV @ 100mA : 100mV @ 200mA
Operating Voltage Range	: 1.5V ~ 6.0V
Output Voltage Range	: 0.8V ~ 5.0V (0.05V increments)
Highly Accurate	: <u>+</u> 2%(The setting voltage accuracy)
Low Power Consumption	: 35 µ A (TYP.)
High Ripple Rejection	: 60dB @1kHz
Operational Ambient Temp	erature
	: - 40 ~ 85
CMOS	
Low ESR Capacitor Comp	patible
Packages	: SOT-25
	SOT-89-5
	USP-6B

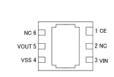

Environmentally Friendly : EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT


TYPICAL PERFORMANCE CHARACTERISTICS


Dropout Voltage vs. Output Current

XC6210 Series


PIN CONFIGURATION

SOT-25 (TOP VIEW)

SOT-89-5 (TOP VIEW)

USP-6B (BOTTOM VIEW) *The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the Vss pins.

PIN ASSIGNMENT

PIN NUMBER			PIN NAME	FUNCTION		
SOT-25	SOT-89-5	USP-6B		FUNCTION		
3	1	1	CE	ON/OFF Control		
1	4	3	Vin	Power Input		
2	2	4	Vss	Ground		
5	5	5	Vout	Output		
4	3	2, 6	NC	No Connection		

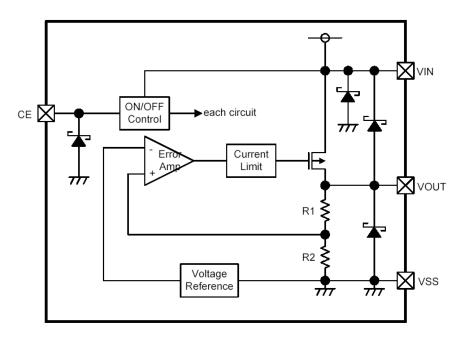
PRODUCT CLASSIFICATION

Selection Guide

CE Input Logic, Internal Pull-Up / Down Resistor

SERIES	CE INPUT LOGIC
XC6210A	High Active with Pull-Down Resistor
XC6210B	High Active with No Pull-Down Resistor
XC6210C	Low Active with Pull-Up Resistor
XC6210D	Low Active with No Pull-Up Resistor

Ordering Information (*1)


XC6210

DESIGNATOR	DESRIPTION	SYMBOL	DESCRIPTION
		А	High Active with pull-down resistor
	CE Pin Functions	В	High Active with no pull-down resistor
		С	Low Active with pull-up resistor
		D	Low Active with no pull-up resistor
	Output Voltage	08~50	ex.) 3.0V =3, =0
		2	0.1V increments, <u>+</u> 2% (Vout <u>≤</u> 1.5V less than <u>+</u> 30mV) ex.) 2.80V =2, =8, =2
	Output Voltage Accuracy	А	0.05V increments, <u>+</u> 2% (Vou⊺ <u>≤</u> 1.5V less than <u>+</u> 30mV) ex.) 2.85V =2, =8, =A
		MR	SOT-25
		MR-G	SOT-25 (Halogen & Antimony free)
	Packages	PR	SOT-89-5
-	Taping Type (*2)	PR-G	SOT-89-5 (Halogen & Antimony free)
		DR	USP-6B
		DR-G	USP-6B (Halogen & Antimony free)

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

^(*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: R- , Reverse orientation: L-)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

				Ta=25
PARAMET	PARAMETER		RATINGS	UNITS
Input Volta	age	Vin	6.5	V
Output Curr	ent *	Ιουτ	900	mA
Output Volt	tage	Vout	Vss -0.3 ~ VIN +0.3	V
CE Pin Volt	CE Pin Voltage		Vss -0.3 ~ 6.5	V
	SOT-25		250	
Power Dissipation	SOT-89-5	Pd	500	mW
	USP-6B		100	
Operating Temperature Range		Topr	- 40 ~ + 85	
Storage Temperature Range		Tstg	- 55 ~ + 125	

* IOUT=Pd / (VIN – VOUT)

ELECTRICAL CHARACTERISTICS

XC6210 series

XC6210 series						٦	Ta=25
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*2), (*3)	Vout(e)	VIN=VOUT(T)+1.0V, IOUT=30mA VCE=ON (VIN or Vss)	x 0.98	Vout(t)	x 1.02	V	
Maximum Output Current		Vout(t) <u>≤</u> 1.5V, Iout=30mA Vce=ON (Vin or Vss)		Vout(t)	(+30mV)	v	
[VOUT(E)>1.6V]	Ιουτμαχ	VIN=VOUT(T)+1.0V, VCE=ON (VIN or VSS)	700	-	-	mA	
Maximum Output Current [Vo∪⊤(E) <u>≤</u> 1.5V]	Ιουτμαχ	VIN=VOUT(T)+1.0V, VCE=ON (VIN or VSS)	500	-	-	110.4	
Load Regulation	Vout	$1mA \leq IOUT \leq 100mA$, VCE=ON(VIN or VSS)	-	15	60	mV	
Dropout Voltage (*4)	Vdif1	IROUT=30mA, VCE=ON (VIN or VSS)		E-1		mV	
Diopoul vollage (4)	Vdif2	IROUT=100mA, VCE=ON (VIN or VSS)		E-2		mv	
Supply Current (A type)		VIN=VCE=VOUT(T)+1.0V		E-3			
Supply Current (B type)		VIN=VCE=VOUT(T)+1.0V	-	35	55		
Supply Current (C type)	IDD	VIN=VOUT(T)+1.0V, VCE=VSS		E-3		μA	
Supply Current (D type)		VIN=VOUT(T)+1.0V, VCE=VSS	-				
Stand-by Current	ISTBY	VIN=6.0V,CE=OFF(VIN or Vss)	-0.10	-	0.10	μA	
Line Regulation	VOUT Topr• VOUT	VOUT(T)+1.0V VIN 6.0V When VOUT(T) 4.5V, 5.5V VIN 6.0V VCE=ON (VIN or Vss), IOUT=30mA	-	0.01	0.20	% / V	
Input Voltage	Vin	-	1.5	-	6.0	V	-
Output Voltage Temperature Characteristics	Vout Topr∙Vout	IOUT=30mA, VCE=ON (VIN or VSS) -40 Topr 85	-	±100	-	ppm/	
Ripple Rejection Rate	PSRR	VIN=[VOUT(T)+1.0]VDC+0.5Vp-pAC When VOUT(T)≥4.75V VIN=5.75VDC+0.5Vp-pAC VCE=ON (VIN or VSS), IOUT=30mA, f=1kHz	-	60	-	dB	
Current Limiter [VOUT(E)>1.6V]	ILIM	VIN=VOUT(T)+1.0V, VCE=ON(VIN or VSS)	700	800	-	mA	
Current Limiter [Vo∪⊤(E) <u>≤</u> 1.5V]	ILIM	VIN=VOUT(T)+1.0V, VCE=ON(VIN or VSS)	-	800	-	mA	
Short-Circuit Current	I _{SHORT}	VIN=VOUT(T)+1.0V, VCE=ON(VIN or VSS)	-	50	-	mA	
CE "High" Level Voltage	VCEH	-	1.3	-	6.0	V	
CE "Low" Level Voltage	5		-	-	0.25	v	
CE "High" Level Current (A type)		VIN=VCE=VOUT(T)+1.0V	E-4	-	E-4	μA	
CE "High" Level Current (B / C / D type)			- 0.10	-	0.10	۳٬۰	
CE "Low" Level Current (C type)	ICEL	Vin=Vout(t)+1.0V, Vce=Vss	E-5	-	E-5	μA	
CE "Low" Level Current (A / B / D type)			- 0.10	-	0.10	F. 7 1	

NOTE:

*1: Unless otherwise stated, VIN=VOUT(T)+1.0V

*2: VOUT(T)=Specified output voltage

*3: VOUT(E)=Effective output voltage

(i.e. the output voltage when "VOUT(T)+1.0V" is provided while maintaining a certain IOUT value).

*4: Vdif ={VIN1^(*6)-VOUT1^(*5) }

*5: A voltage equal to 98% of the output voltage whenever a stabilized VOUT1=IOUT{VOUT(T)+1.0V} is input.

*6: VIN1= the input voltage when Vout1, which appears as input voltage is gradually decreased.

*7: Vout(t)<u>≤</u>1.50V MIN. : VOUT(T) - 30mV, MAX. : VOUT(T) +30mV

*8: CE conditions: XC6210A / B type: ON=VIN, OFF=Vss

XC6210C / D type: ON=Vss, OFF=VIN

Ta=25 E-5

CURRENT

(µA)

ICEL

MAX.

-1.50

-2.00

-2.50

-3.00

-3.50

VOLTAGE CHART

2.50

2.55

2.60 2.65

2.70

2.75

2.80

2.85 2.90

2.95

2.450

2.499

2.548

2.597

2.646

2.695

2.744

2.793

2.842

2.891

2.550

2.601

2.652

2.703

2.754

2.805

2.856

2.907

2.958

3.009

18.0

28.0

60.0

90.0

40.0

66.0

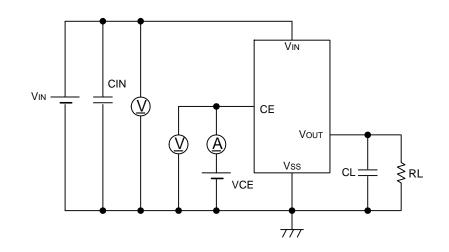
3.50

11.00

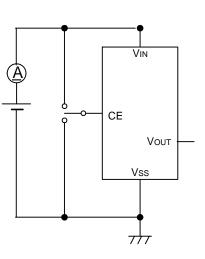
-11.00

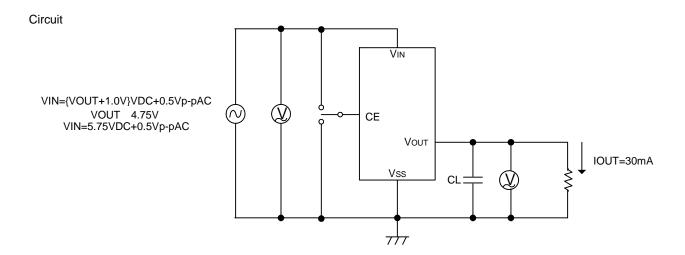
E-1 E-2 E-3 E-4 SETTING OUTPUT DROPOUT DROPOUT OUTPUT VOLTAGE SUPPLY CE "H" LEVEL CE "L" LEVEL **VOLTAGE 1 VOLTAGE 2** VOLTAGE (Accuracy: 2%) CURRENT CURRENT (IOUT=30mA) (IOUT=100mA) (V) (V) (mV) (mV) (µA) (µA) Vout Vdif1 Vdif2 IDD ICEH VOUT(T) MIN. MAX. TYP. MAX. TYP. MAX. TYP. MAX. MIN. MAX. MIN. 0.80 0.770 0.830 700.0 800.0 0.820 0.880 0.85 100.0 250.0 38.0 1.50 5.00 -5.00 60.0 0.90 0.870 0.930 600.0 700.0 0.95 0.920 0.980 1.030 1.00 0.970 500.0 600.0 1.020 1.080 1.05 50.0 150.0 1.10 1.070 1.130 400.0 500.0 1.15 1.120 1.180 1.20 1.230 1.170 300.0 400.0 38.5 61.5 2.00 6.50 -6.50 1.280 1.25 1.220 1.270 1.330 1.30 30.0 200.0 100.0 300.0 1.35 1.320 1.380 1.40 1.370 1.430 100.0 250.0 1.45 1.420 1.480 1.470 1.530 1.50 1.581 1.55 1.519 1.60 1.568 1.632 1.65 1.617 1.683 1.70 1.666 1.734 27.0 41.0 90.0 135.0 39.0 63.0 2.50 8.00 -8.00 1.75 1.715 1.785 1.80 1.764 1.836 1.85 1.813 1.887 1.90 1.862 1.938 1.989 1.95 1.911 2.00 1.960 2.040 2.05 2.009 2.091 2.058 2.142 2.10 2.193 2.15 2.107 2.20 2.156 2.244 25.0 37.0 80.0 120.0 39.5 64.5 3.00 9.50 -9.50 2.25 2.205 2.295 2.30 2.254 2.346 2.35 2.303 2.397 2.40 2.352 2.448 2.45 2.401 2.499

Dropout Voltage, Supply Current, CE "H / L" Level Current Chart


VOLTAGE CHART (Continued)

Dropout Voltage, Supply Current, CE "H / L" Level Current Chart


Diopour	opout voltage, Supply Current, CE "H / L" Level Current Chart										Ta=25							
SETTING	OUTPUT		E	-1	E	-2	E	-3	E	-4	E	-5						
OUTPUT	VOLTAGE		DRO	POUT	DRO	POUT	0.11	ע וסנ			<u>сг "</u> !"							
VOLTAGE		acy: 2%)	VOLT	AGE 1	VOLT	AGE 2		PPLY RENT		LEVEL RENT								
	(, , , , , , , , , , , , , , , , , , ,		(IOUT=	:30mA)	(IOUT=	100mA)	COR		COR		CURRENT							
(V)	(V)	(m	וV)	(n	nV)	(μ	ιA)	(µ	ιA)	(μ	.A)						
	V	OUT	Vo	dif1	Vo	dif2	lc	DD	Ic	EH	Ic	EL						
Vout(t)	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.						
3.00	2.940	3.060																
3.05	2.989	3.111																
3.10	3.038	3.162																
3.15	3.087	3.213																
3.20	3.136	3.264	45.0	22.0	50.0	75.0	40 F	07.5	4.00	40.50	40.50	4.00						
3.25	3.185	3.315	15.0	23.0	50.0	75.0	40.5	67.5	4.00	12.50	-12.50	-4.00						
3.30	3.234	3.366																
3.35	3.283	3.417	1															
3.40	3.332	3.468	1															
3.45	3.381	3.519	1															
3.50	3.430	3.570																
3.55	3.479	3.621			-													
3.60	3.528	3.672																
3.65	3.577	3.723		23				69.0	4.40	14.00	-14.00	-4.40						
3.70	3.626	3.774			50	75	41.0											
3.75	3.675	3.825	15															
3.80	3.724	3.876																
3.85	3.773	3.927																
3.90	3.822	3.978																
3.95	3.871	4.029																
4.00	3.920	4.080																
4.05	3.969	4.131	1	1	1	1												
4.10	4.018	4.182																
4.15	4.067	4.233																
4.20	4.116	4.284																
4.25	4.165	4.335					41.5	70.5	4.85	15.50	-15.50	-4.85						
4.30	4.214	4.386																
4.30	4.214	4.386																
4.40	4.312	4.488	1															
4.45	4.361	4.539																
4.50	4.410	4.590	15.0	23.0	50.0	75.0												
4.55	4.459	4.641		-	-	-												
4.60	4.508	4.692																
4.65	4.557	4.743																
4.70	4.606	4.794																
4.75	4.655	4.845					42.0	72.0	5.30	17.00	-17.00	-5.30						
4.80	4.704	4.896																
4.85	4.753	4.947																
4.90	4.802	4.998	1															
4.95	4.851	5.049																
5.00	4.900	5.100																


TEST CIRCUITS

Circuit

Circuit

Output Capacitor Corresponding Chart

VR OUTPUT VOLTAGE	0.8V~1.45V	1.5V ~ 1.75V	1.8V ~ 5.0V
CL	More than 6.8 µ F	More than 4.7 µ F	More than 1.0 µ F

OPERATIONAL EXPLANATION

<Output Voltage Regulator Control>

The voltage, divided by resistors R1 & R2, which are connected to the Vout pin is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled & stabilized by negative feedback. The constant current limit circuit and short circuit protection operate in relation to the level of output current.

<Low ESR Capacitor>

With the XC6210 series regulator, a stable output voltage is achievable even if low ESR capacitors are used, as a phase compensation circuit is built into the regulator. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) be connected as close as possible, between the output pin (VOUT) and the VSS pin. Please use an output capacitor (CL) with a capacitance, based on the chart below. We also suggest an input capacitor (CIN) of 1μ F: this should be connected between VIN and VSS in order to stabilize input power source.

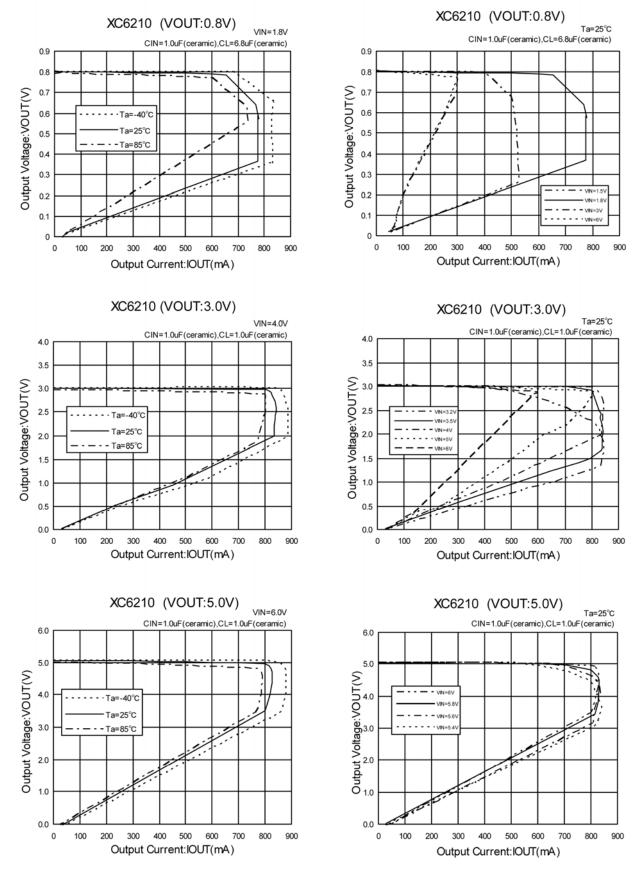
Output Capacitor Corresponding Chart

•			
Vout	0.8V ~ 1.45V	1.5V ~ 1.75V	1.8V ~ 5.0V
CL	More than 6.8 µ F	More than 4.7 µ F	More than 1.0 µ F

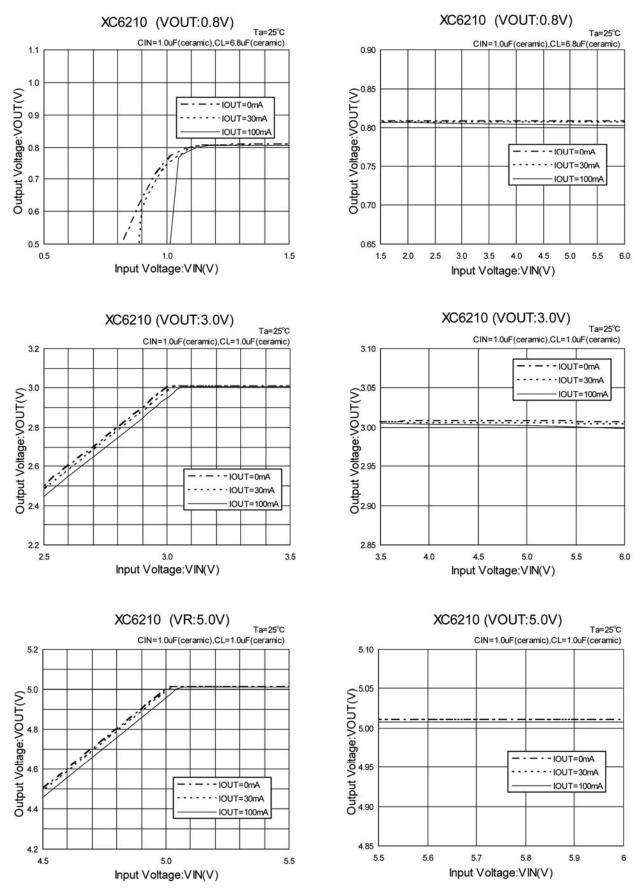
<Current Limiter, Short-Circuit Protection>

The XC6210 series regulator offers a combination of current limit and short circuit protection by means of a built-in fixed current limiter circuit and a foldback circuit. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, the output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

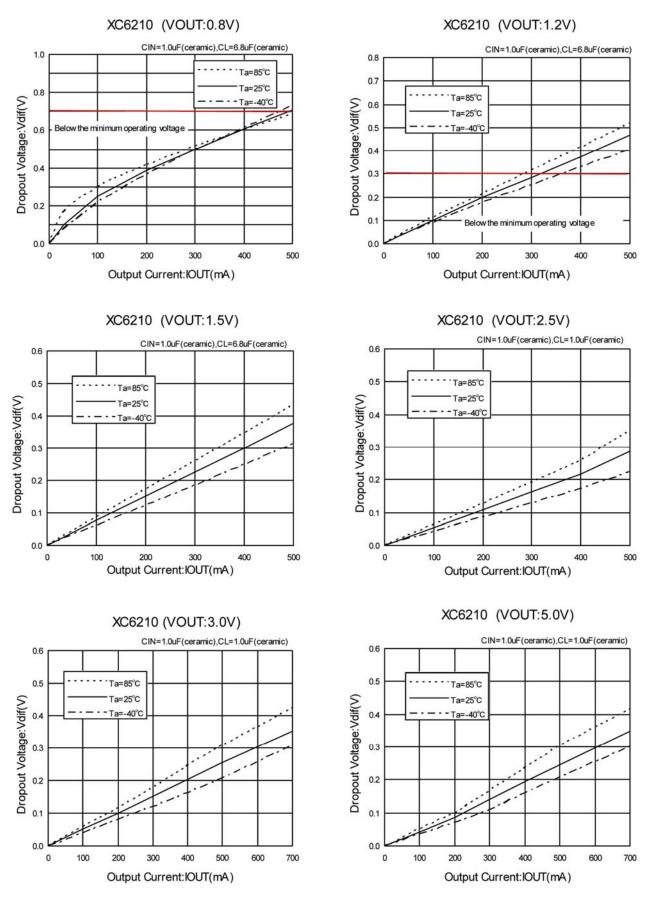
<CE Pin>


The IC's internal regulator circuitry can be shut down via the signal from the CE pin with the XC6210 series. In shutdown mode, output at the VOUT pin will be pulled down to the VSS level via R1 & R2. Options are available for the CE pin logic (See the product classification). Note that as the XC6210B types are 'High Active / No Pull-Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation. We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a voltage other than VIN or Vss is applied.

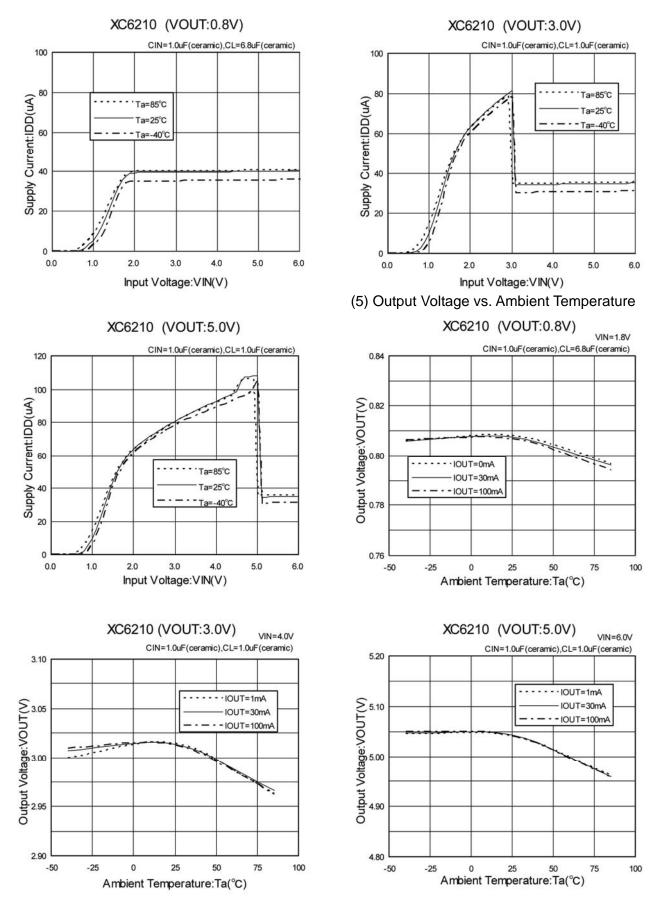
NOTES ON USE


- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen VIN and Vss wiring in particular.
- 3. Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible. Should rapid input fluctuation or load fluctuation occur, please increase the capacitor value such as CIN or CL to stabilize the operation.

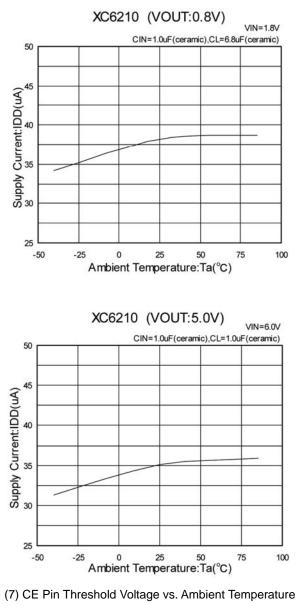
TYPICAL PERFORMANCE CHARACTERISTICS

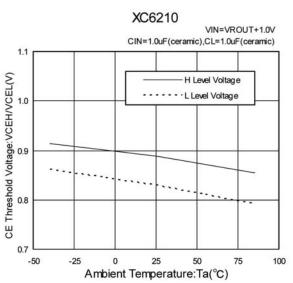

(1) Output Voltage vs. Output Current

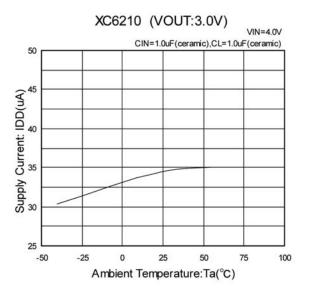
(2) Output Voltage vs. Input Voltage



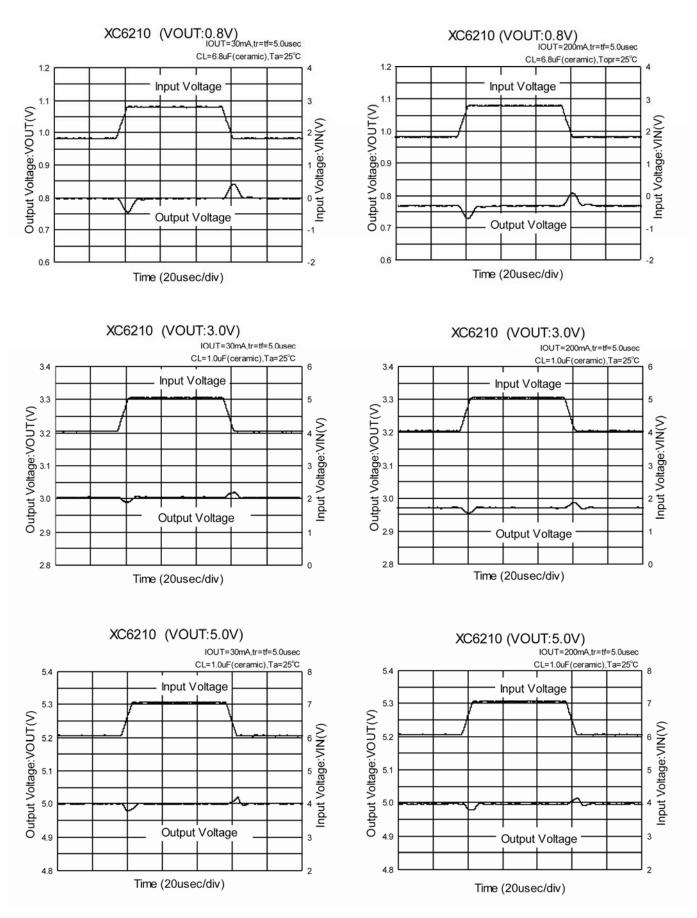
(3) Dropout Voltage vs. Output Current

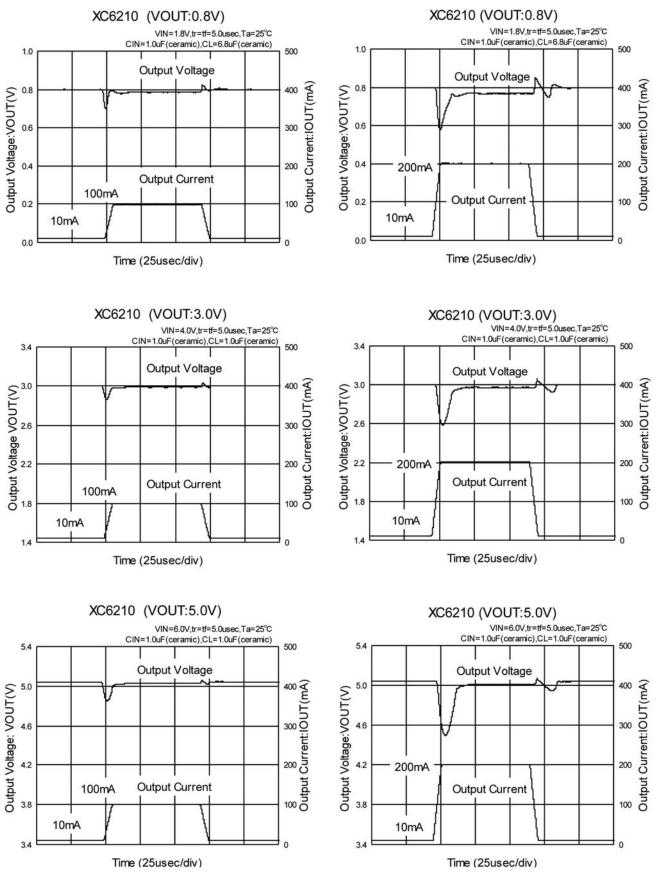



TOIREX 11/22


(4) Supply Current vs. Input Voltage

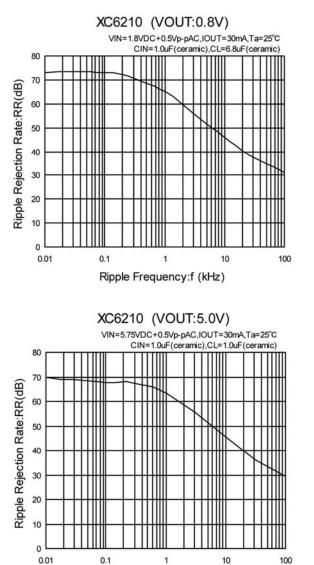
(6) Supply Current vs. Ambient Temperature



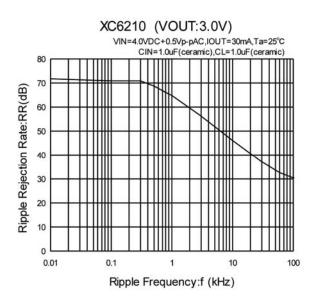


TOIREX 13/22

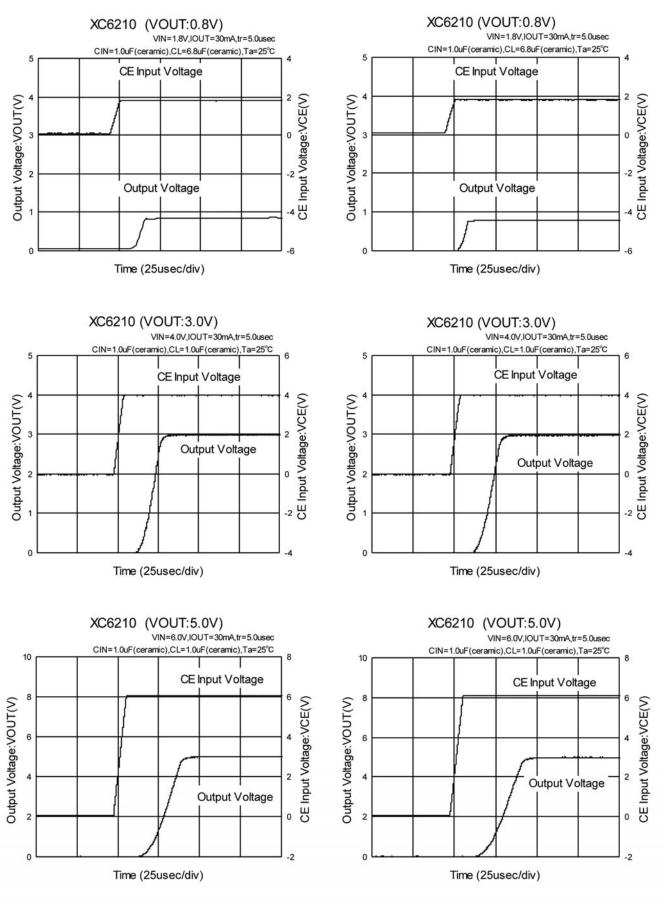
(8) Input Transient Response 1



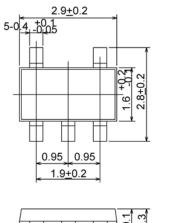
(9) Load Transient Response

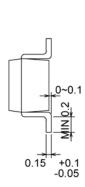


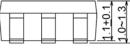
TOIREX 15/22

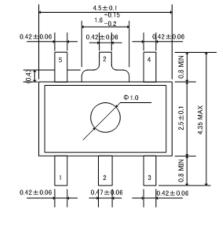

(10) Ripple Rejection Rate

Ripple Frequency:f (kHz)

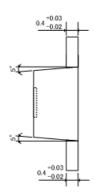

(11) Input Transient Response 2

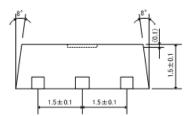


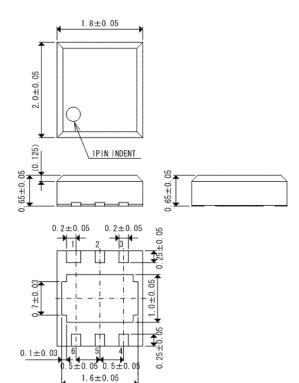

TOIREX 17/22


PACKAGING INFORMATION

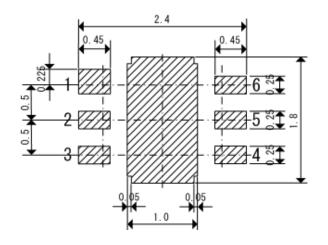
SOT-25 (SOT-23-5)



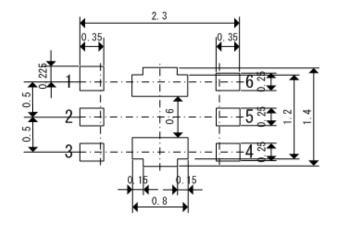




SOT-89-5

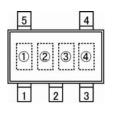


USP-6B

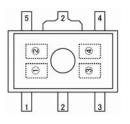

18/22

PACKAGING INFORMATION (Continued)

USP-6B Reference Pattern Layout


USP-6B Reference Metal Mask Design

XC6210 Series


MARKING RULE

SOT-25

SOT-25 (TOP VIEW)

SOT-89-5

SOT-89-5 (TOP VIEW)

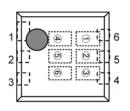
represents product series

MARK	PRODUCT SERIES
0	XC6210xxxxxx

represents CE function

	MA			
VOLTAGE= VOLTAGE=		VOLTAGE=	VOLTAGE=	PRODUCT SERIES
0.1~3.0V	3.1~6.0V	0.15~3.05V	3.15~6.05V	
V	V A E		L	XC6210Axxxxx
Х	X B F		М	XC6210Bxxxxx
Y	Y С Н		N	XC6210Cxxxxx
Z D		К	Р	XC6210Dxxxxx

represents output voltage


MARK	OU.		OLTAGE	(V)	MARK	OU		OLTAGE	E (V)
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	-	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	-	3.35	К	1.8	4.8	1.85	4.85
3	-	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	-	3.55	М	2.0	5.0	2.05	-
5	-	3.6	-	3.65	N	2.1	-	2.15	-
6	-	3.7	-	3.75	Р	2.2	-	2.25	-
7	0.8	3.8	0.85	3.85	R	2.3	-	2.35	-
8	0.9	3.9	0.95	3.95	S	2.4	-	2.45	-
9	1.0	4.0	1.05	4.05	Т	2.5	-	2.55	-
А	1.1	4.1	1.15	4.15	U	2.6	-	2.65	-
В	1.2	4.2	1.25	4.25	V	2.7	-	2.75	-
С	1.3	4.3	1.35	4.35	Х	2.8	-	2.85	-
D	1.4	4.4	1.45	4.45	Y	2.9	-	2.95	-
E	1.5	4.5	1.55	4.55	Z	3.0	-	3.05	-

represents production lot number

0 to 9, A to Z reverse character 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

MARKING RULE (Continued)

USP-6B

USP-6B (TOP VIEW)

MARK			
		PRODUCT SERIES	
1	0	XC6210xxxxxx	

represents CE Function

represents product series

MARK	TYPE	PRODUCT SERIES	
А	High Active With Pull-Down Resistor	XC6210AxxxDx	
В	High Active With No Pull-Down Resistor	XC6210AxxxDx	
С	Low Active With Pull-Up Resistor	XC6210AxxxDx	
D	Low Active With No Pull-Up Resistor	XC6210AxxxDx	
S	Custom	XC6210AxxxDx	

represents the integer number of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	
3	3.3	XC6210x3xxDx	
5	5.0	XC6210x5xxDx	

represents the decimal point of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	MARK	VOLTAGE (V)	PRODUCT SERIES
0	x.0	XC6210xx02Dx	A	x.05	XC6210xx0ADx
1	x.1	XC6210xx12Dx	В	x.15	XC6210xx1ADx
2	x.2	XC6210xx22Dx	С	x.25	XC6210xx2ADx
3	x.3	XC6210xx32Dx	D	x.35	XC6210xx3ADx
4	x.4	XC6210xx42Dx	Е	x.45	XC6210xx4ADx
5	x.5	XC6210xx52Dx	F	x.55	XC6210xx5ADx
6	x.6	XC6210xx62Dx	Н	x.65	XC6210xx6ADx
7	x.7	XC6210xx72Dx	К	x.75	XC6210xx7ADx
8	x.8	XC6210xx82Dx	L	x.85	XC6210xx8ADx
9	x.9	XC6210xx92Dx	М	x.95	XC6210xx9ADx

represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W, excluded) Note: No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.

(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)

- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.